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* GPU

— Faster
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GPU Technology

 NVIDIA: Fermi chip first to support HPC
— Formed partnerships with Cray, IBM on HPC systems

— #1, #3 systems on TOP500 (Fermi, China)

GPU: 2008
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 AMD/ATI: Primarily graphics currently
— #7 system on TOP500 (AMD-Radeon, China)
— Fusion chip in 2011 (5 TeraFlops)
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High-Resolution Rapid Refresh

Real-time, 12 hour forecast, 3-km CONUS domain,
updated hourly

Explicit prediction of Rapid Refresh
thunderstorms T

Improved prediction of terrain
related and other mesoscale
features (wind, clouds, precip)

HRRR runs as nest within RUC
or Rapid Refresh and benefits |/
from RUC / RR data assimilation [+~

v NOAA Global Systems Division - Boulder, Colorado
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Using GPUs for

Global Cloud Resolving Models (GCRM)
— Benefits

e Clouds have a major influence on weather and climate
* Improvements in 5-100 day forecasts

* Improved Hurricane track and intensity

— Active developments in the research community
* NICAM: University of Tokyo
o lcosahedral
* GCRM: Colorado State University

i
* NIM: NOAA Earth System Research Laboratory GHd
— Non-hydrostatic Icosahedral Model (NIM)

e Targeting 2KM horizontal resolution
* Uniform, hexagonal-based, icosahedral grid

* Novel indirect addressing scheme used that permits concise,

w efficient code




Software Development

from CPUs to GPUs (2010s)

Accelerator Approach Whole Model Approach

—

— NIM was designed for CPU and GPU Architectures

— Code converted to CUDA using the F2C-ACC compiler we
developed
— Commercial compilers were not available in 2008
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GPU Programming Approaches

* Language Approach
— CUDA, OpenCL, CUDA Fortran, etc.

— User control over coding and optimizations
* May not be portable across architectures

— Requires that separate versions be maintained
* In practice this rarely works — too costly, difficult

* Directive-based Approach

— Single source for CPU, GPU, serial, parallel

— Appear as comments in the source
— IACC$DO VECTOR (1)

— Compilers can analyze and (hopefully) generate efficient

code

* Dependent on maturity




Directive-Based Fortran GPU
Compilers and Portability

* OpenACC proposed as a standard

— PGI:  Accel — CAPS: HMPP
— F2C-ACC: OpenSource — Cray: OMP “like”

GPU Compilers

F2C-ACC *
Fortran

CAPS
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F2C-ACC GPU Compiler

 Developed to speed parallelization of NIM
— Commercial compilers were not available in 2008
 Translates Fortran to C or CUDA
— Many (but not all) language features supported
— Generates readable, debuggable code with original comments retained

 Ten directives for code parallelization, eg.

— ACCSREGION | Define GPU regions

— ACCSDO I Identify loop level parallelism

— ACCSDATA | Move data between CPU and GPU
— ACCSINSERT, ACCSREMOVE | Hand insertions / deletions where

translation is not available

* Available on request
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Fortran GPU Compiler Results (2011)

Using NIM G5 - 10242 horizontal points, 96 vertical levels
Fermi GPU vs. Intel Westmere CPU Socket

NIM CPU 1- CPU6- F2C-ACC HMPP PGI GPU F2C-ACC
routine core Time core Time GPU Time GPU Time Time Speedup vs.
(sec) (sec) (sec) (sec) (sec) 6-core CPU

Total 8654 2068 449 - -- 4.6
vdmints 4559 1062 196 192 197 5.4
vdminty 2119 446 91 101 88 4.9
flux 964 175 26 24 26 6.7

vdn 131 86 18 17 18 4.8
diag 389 74 42 33 -- 1.8
force 80 33 14 11 13 4.7




WRF Physics

e Community Model used worldwide for more than a decade
— Significant number of collaborators, contributors
 Usedin WRF-ARW, WRF-NMM, WRF-RR, WRF-CHEM, HWREF, etc.
* Traditional cartesian grid
— 3D arrays (horizontal, vertical, horizontal) ==>array3D( i,k,Jj )
* Designed for CPU architectures
* Limited ability to change the code
— Must continue to be performance portable

* GPU parallelization
— In progress — select routines
— Dependencies in vertical

— GPU: threading in horizontal dimensions :
- . . blocking
... — Collapse |, j dimensions during transpose
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Parallelization Factors for NIM

* Code design a dominant factor in performance

— Weather codes typically have a high memory access to
compute ratio
* Implies lots of accesses, few computations

— Data alignment led to a 10x improvement

* Data dependencies guide
parallelization lat-lon a ( k, i, 3 )
— Dynamics are in the horizontal
* a[vert, horiz]
— Physics are in the vertical column k i
* a[ horiz, vert] ‘ ;
_.— Transpose needed to optimize

g
-

|@’ memory accesses

NIM: a [ k, indx)




Successes

e Parallelization of NIM

— 5x speedup of NIM dynamics (socket-to-socket)
— F2C-ACC continues to be used for NIM

* Development of F2C-ACC

— Useful for comparisons to commercial compilers
» Establish performance benchmarks
* Ease of use: readability of generated code
* Directives that support our weather, climate codes

* Validate correctness of results

— Feedback to compiler vendors
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* Communicate needs in the weather and climate communig




Challenges

* Validating results

— dependent on the computer architecture
 CPU, GPU, Intel, IBM, NVIDIA, AMDm etyc

— Physics is more sensitive than dynamics
— How do you determine acceptable results?

* Performance portability
— Modest to extensive code changes

— Promotion of variables for correctness
 Demotion of variables for performance

— Loop restructuring
w— Blocking and threading control
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Challenges

* Data management

— How to work with high data volume
* 15 KM, 2M horizontal points, 96 vertical

— 2GB per variable per output time

e 1.75KM, 167M horizontal points, 192 vertical
— Projected 64GB per variable per output time

 \/isualization

— Exploring using gaming software
* GPUs, progressive disclosure

UNITY 2D

game development tool
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TerraViz

FIM Relative Humidity

® Show Data sets GUI
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Conclusion

e Committed to a single source

— Performance portable between CPU, GPU, serial,
parallel

 NVIDIA, AMD, Intel, etc
— We anticipate significant challenges for legacy codes

 We will continue to compare compilers
— F2C-ACC, HMPP, and PGl Accel

 Performance, ease-of-use

e Challenges Remain
— Codes take too long to port to GPUs
— Performance portability a concern
~ — Standards for GPU directives
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